III Форум учителей химии

Неудобные вопросы школьного курса химии

Ромашов Леонид Владимирович

кандидат химических наук научный сотрудник Института органической химии им. Н.Д. Зелинского РАН руководитель химического отделения ГБОУ Школы №192 г. Москвы доцент химического факультета МГУ им. М.В. Ломоносова национальный тренер сборной России на Международной химической олимпиаде куратор секции органической химии на Международной Менделеевской олимпиаде

Неудобные вопросы

- Сколько клеточек отступать?
- Писать ли «Классная работа»?
- Зачем нам учить химию?
- Почему вы ему поставили 4, а мне 3?

Самый сложный и опасный вопрос школьного курса химии

Почему?

- Почему серная и азотная кислота ведут себя по-особенному?
- Почему серная кислота проявляет окислительные свойства только в

концентрированном растворе, а азотная в любом?

Для обычных кислот в водном растворе при взаимодействии с металлами:

$$H_3O^+ + e^- = H \cdot + H_2O$$

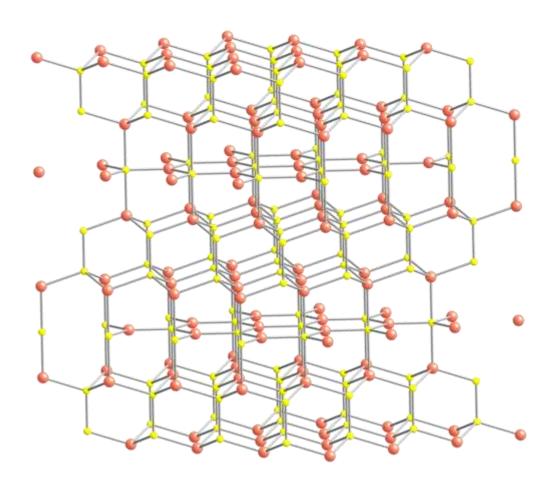
2H \cdot = H_2

$$HNO_3 + HNO_3 \leftrightarrows H_2NO_3^+ + NO_3^-$$

 $H_2NO_3^+ \leftrightarrows NO_2^+ + H_2O$

$$H_2SO_4 + H_2SO_4 \leftrightarrows H_3SO_4^+ + HSO_4^-$$

 $H_3SO_4^+ \leftrightarrows HSO_3^+ + H_2O$


Почему метафосфорная кислота не проявляет тех же окислительных свойств, что и азотная?

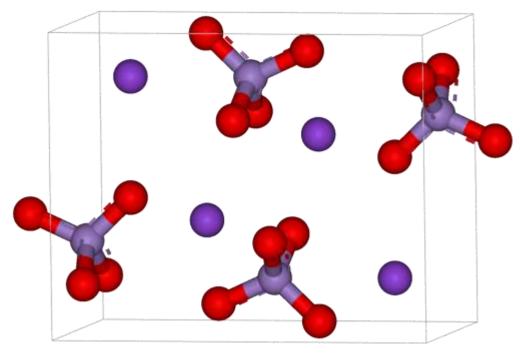
Почему
$$Cu^{2+}$$
 окисляет I^- до I_2 , I_2 окисляет S^{2-} до S , но Cu^{2+} с S^{2-} дает CuS ?

$$Cu^{2+} + S^{2-} = CuS \downarrow$$
 - ионный обмен?

Или нет?!!!

Нет!

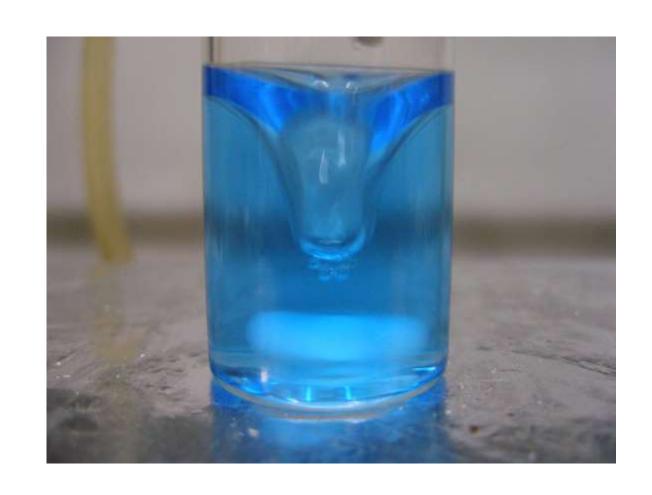
$$CuS = Cu2S \cdot CuS2$$



• Почему основные классы неорганических соединений именно такие?

Оксиды, кислоты, основания, соли

• Почему марганцовка именно калиевая соль?


Почему КМnO₄ в кислой среде более сильный окислитель?

$$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$

$$E = E^0 + \frac{0.059}{z} \lg \frac{a_{ox}}{a_{red}}$$

Почему основная степень окисления меди – (+2)?

 $\begin{array}{c} \text{Cu} \\ 4s^1 3d^{10} \end{array}$

Основные соли

Тип			III
Основное взаимодействие	Металл — кислотный остаток	Металл – гидроксид	Металл – кислотный остаток и металл – гидроксид
Примеры	Ca ₅ (PO ₄) ₃ OH	Cu ₂ (OH) ₂ SO ₄	Zn ₂ (OH) ₂ CO ₃

Основные соли

Таким образом, изучая основные соли, можно наглядно рассмотреть следующие вопросы:

- причины низкой растворимости некоторых ионных соединений;
- влияние типа связи на химические свойства;
- зависимость продуктов реакций от порядка смешения реагентов;
- связь основных солей с гидролизом по катиону;
- составление формул небинарных соединений.

Органическая химия

- Откуда органики знают строение получающихся продуктов?
- Почему нигде кроме школьных учебников не используется реакция Вюрца?
- Почему неустойчивы геминальные диолы?
- Откуда берется правило Зайцева?
- Почему вторичные амины более основны, чем первичные и третичные?
- Почему фенол бромируется сразу по трем положениям?
- Почему этанол дает галоформную реакцию?

Квантовые числа

- Откуда они взялись?
- Почему их четыре?
- Почему они принимают такие значения?
- Почему подуровни обозначают буквами s, p, d, f?
- Что такое спин?
- Можно ли нарушать правило Хунда?
- Откуда берется эффект проскока?

Где найти ответы?

Вузовские учебники

Спасибо за внимание!